Parity of ranks of abelian surfaces

Céline Maistret
University of Bristol

September 5, 2017

Parity of ranks of abelian surfaces

(1) Ranks and parity of ranks of abelian varieties

- Conjectures
- Example
(2) Parity of ranks of principally polarized abelian surfaces

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A / K be an abelian variety over a number field

$$
A(K) \simeq \mathbb{Z}^{r k(A)} \oplus T, \quad r k_{A},|T|<\infty
$$

Birch and Swinnerton-Dyer conjecture
Granting analytic continuation of the L-function of A / K to \mathbb{C},

$$
r k(A)=\operatorname{ord}_{s=1} L(A / K, s)=: r k_{a n}(A) .
$$

The completed L-function $L^{*}(A / K, s)$ satisfies

$$
L(A / K, S)=W(A) L(A / K, 2-S), W(A) \in\{ \pm 1\}
$$

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A / K be an abelian variety over a number field

$$
A(K) \simeq \mathbb{Z}^{r k(A)} \oplus T, \quad r k_{A},|T|<\infty
$$

Birch and Swinnerton-Dyer conjecture
Granting analytic continuation of the L-function of A / K to \mathbb{C},

$$
r k(A)=\operatorname{ord}_{s=1} L(A / K, s)=: r k_{a n}(A)
$$

The completed L-function $L^{*}(A / K, s)$ satisfies

$$
L^{*}(A / K, S)=W(A) L^{*}(A / K, 2-S), W(A) \in\{ \pm 1\}
$$

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A / K be an abelian variety over a number field

$$
A(K) \simeq \mathbb{Z}^{r k(A)} \oplus T, \quad r k_{A},|T|<\infty
$$

Birch and Swinnerton-Dyer conjecture
Granting analytic continuation of the L-function of A / K to \mathbb{C},

$$
r k(A)=\operatorname{ord}_{s=1} L(A / K, s)=: r k_{a n}(A)
$$

Conjectural functional equation

The completed L-function $L^{*}(A / K, s)$ satisfies

$$
L^{*}(A / K, s)=W(A) L^{*}(A / K, 2-s), \quad W(A) \in\{ \pm 1\} .
$$

Parity of analytic rank

Analytic rank

$$
r k_{a n}(A):=\operatorname{ord}_{s=1} L(A / K, s) .
$$

Sign in functional equation

$$
L^{*}(A / K, s)=W(A) L^{*}(A / K, 2-s), \quad W(A) \in\{ \pm 1\}
$$

Consequence

$$
(-1)^{r k_{2 n}(A)}=W(A)
$$

Parity conjecture

B.S.D. modulo 2

$$
(-1)^{r k(A)} \underset{B \bar{S} D}{ }(-1)^{r k_{a n}(A)}=W(A)
$$

Global root number
The sign in the functional equation $W(A)$ is conjectured to be equal to the global root number of A :

$$
W(A)=\omega(A) .
$$

Parity conjecture

$$
(-1)^{r k(A)}=\omega(A) .
$$

Parity conjecture

B.S.D. modulo 2

$$
(-1)^{r k(A)} \underset{B \bar{S} D}{ }(-1)^{r k_{a n}(A)}=W(A) .
$$

Global root number

The sign in the functional equation $W(A)$ is conjectured to be equal to the global root number of A :

$$
W(A)=\omega(A)
$$

Parity conjecture

Parity conjecture

B.S.D. modulo 2

$$
(-1)^{r k(A)} \underset{B \bar{S} D}{ }(-1)^{r k_{a n}(A)}=W(A) .
$$

Global root number

The sign in the functional equation $W(A)$ is conjectured to be equal to the global root number of A :

$$
W(A)=\omega(A)
$$

Parity conjecture

$$
(-1)^{r k(A)}=\omega(A)
$$

p^{∞} Selmer rank and p-parity conjecture

p^{∞} Selmer rank
For a prime p, define the p^{∞} Selmer rank as

$$
\begin{gathered}
r k_{p}(A)=r k(A)+\delta_{p}, \text { where } \\
\amalg\left[p^{\infty}\right]=\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\delta_{p}} \times \amalg_{0}\left[p^{\infty}\right], \quad\left|Ш_{0}\left[p^{\infty}\right]\right|<\infty .
\end{gathered}
$$

$$
r k(A)=r k_{p}(A)
$$

p-parity conjecture
For al' prime p_{1}

$$
(-1)^{r k_{p}(A)}=\omega(A) .
$$

p^{∞} Selmer rank and p-parity conjecture
p^{∞} Selmer rank
For a prime p, define the p^{∞} Selmer rank as

$$
\begin{gathered}
r k_{p}(A)=r k(A)+\delta_{p}, \text { where } \\
\amalg\left[p^{\infty}\right]=\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\delta_{p}} \times \amalg_{0}\left[p^{\infty}\right], \quad\left|\amalg_{0}\left[p^{\infty}\right]\right|<\infty .
\end{gathered}
$$

Assuming finiteness of $\amalg(A)$; for all prime p

$$
r k(A)=r k_{p}(A) .
$$

p-parity conjecture
For all prime p,

$$
(-1)^{r k_{p}(A)}=\omega(A) .
$$

p^{∞} Selmer rank and p-parity conjecture
p^{∞} Selmer rank
For a prime p, define the p^{∞} Selmer rank as

$$
\begin{gathered}
r k_{p}(A)=r k(A)+\delta_{p}, \text { where } \\
\amalg\left[p^{\infty}\right]=\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\delta_{p}} \times \amalg_{0}\left[p^{\infty}\right], \quad\left|\amalg_{0}\left[p^{\infty}\right]\right|<\infty .
\end{gathered}
$$

Assuming finiteness of $\amalg(A)$; for all prime p

$$
r k(A)=r k_{p}(A) .
$$

p-parity conjecture
For all prime p,

$$
(-1)^{r k_{p}(A)}=\omega(A)
$$

Parity and isogeny

Theorem (Cassels). Isogeny invariance of B.S.D. quotient
Assuming $\amalg(E)$ is finite, if $\Phi: E \rightarrow E^{\prime}$ is an isogeny defined over \mathbb{Q} then

$$
\frac{|\amalg(E)| \operatorname{Reg}_{E} C_{E}}{\left|E(\mathbb{Q})_{\text {tors }}\right|^{2}}=\frac{\left|\amalg\left(E^{\prime}\right)\right| \operatorname{Reg}_{E^{\prime}} C_{E^{\prime}}}{\left|E^{\prime}(\mathbb{Q})_{\text {tors }}\right|^{2}}
$$

Parity and isogeny

Theorem (Cassels). Isogeny invariance of B.S.D. quotient
Assuming $\amalg(E)$ is finite, if $\Phi: E \rightarrow E^{\prime}$ is an isogeny defined over \mathbb{Q} then

$$
\frac{|\amalg(E)| \operatorname{Reg}_{E} C_{E}}{\left|E(\mathbb{Q})_{\text {tors }}\right|^{2}}=\frac{\left|\amalg\left(E^{\prime}\right)\right| \operatorname{Reg}_{E^{\prime}} C_{E^{\prime}}}{\left|E^{\prime}(\mathbb{Q})_{\text {tors }}\right|^{2}}
$$

Example

$E / \mathbb{Q}: y^{2}+y=x^{3}+x^{2}-7 x+5, \quad E$ has a 3-isogeny, $\Delta_{E}=-7 \cdot 13, \quad c_{7}=c_{13}=1, \quad c_{7}^{\prime}=c_{13}^{\prime}=3, \quad c_{\infty}=3 c_{\infty}^{\prime}$

$$
\Rightarrow \frac{\operatorname{Reg}_{E}}{\operatorname{Reg}_{E^{\prime}}}=\frac{|\amalg(E)|\left|E^{\prime}(\mathbb{Q})_{\text {tors }}\right|^{2} C_{E}}{\left|Ш\left(E^{\prime}\right)\right|\left|E(\mathbb{Q})_{\text {tors }}\right|^{2} C_{E^{\prime}}}=\frac{C_{E}}{C_{E^{\prime}}} \cdot \square=\frac{3}{9} \cdot \square \neq 1
$$

$\Rightarrow E$ has a point of infinite order.

Lemma (Dokchitser-Dokchitser)

If Φ is an isogeny of degree d such that $\Phi^{*} \Phi=\Phi \Phi^{*}=[d]$ then

$$
\frac{\operatorname{Reg}_{E}}{\operatorname{Re\sigma _{-1}}}=d^{r k(E)} \cdot \square
$$

$$
c_{7}=c_{13}=1, \quad c_{7}^{\prime}=c_{13}^{\prime}=3, \quad c_{\infty}=3 c_{\infty}^{\prime}
$$

$$
\frac{\operatorname{Reg}_{E}}{\operatorname{Reg}_{E^{\prime}}}=\frac{1}{3} \cdot \square=3^{r k(E)} \cdot \square
$$

$\Rightarrow E$ has odd rank

Remark

Without assuming finiteness of $\amalg(E)$, can prove $r k_{3}(E)$ is odd.

"Proof" of parity conjecture for p.p. abelian surfaces

- Enough to prove 2-parity conjecture for Jacobians of genus 2 curves

$$
C: y^{2}=f(x), \quad \operatorname{deg}(f)=6, \quad G a l(f) \subseteq C_{2} \times D_{4}
$$

- Computation of parities

$$
(-1)^{r k_{2}(J)}=\prod_{v}(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v} m_{v}}{c_{v} m_{v}}\right)}, \quad \omega(J)=\prod_{v} \omega_{v}(J) .
$$

- 2-parity conjecture

$$
(-1)^{r k_{2}(J)}=\prod_{v}(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v} m_{v}}{c_{v} m_{v}}\right)}=\prod_{v} \omega_{v}(J)=\omega(J)
$$

- Enough to consider Jacobians of genus 2 curves

$$
C: y^{2}=f(x), \quad \operatorname{deg}(f)=6
$$

Theorem (cf Gonzales-Guàrdia-Rotger)

Let A / K be a principally polarized abelian surface defined over a number field K. Then A is one of the following three types:

- $A \simeq_{K} I(C)$, where C / K is a smooth curve of genus 2 ,
- $A \simeq K E_{1} \times E_{2}$, where E_{1}, E_{2} are two elliptic curves defined over K,
- $A \simeq{ }_{K} \operatorname{Res}_{F / K} E$, where $\operatorname{Res}_{F / K} E$ is the Weil restriction of an elliptic curve defined over a quadratic extension F / K
- Enough to consider Jacobians of genus 2 curves

$$
C: y^{2}=f(x), \quad \operatorname{deg}(f)=6
$$

Theorem (cf Gonzales-Guàrdia-Rotger)

Let A / K be a principally polarized abelian surface defined over a number field K. Then A is one of the following three types:

- $A \simeq_{K} J(C)$, where C / K is a smooth curve of genus 2 ,
- $A \simeq_{K} E_{1} \times E_{2}$, where E_{1}, E_{2} are two elliptic curves defined over K,
- $A \simeq_{K} \operatorname{Res}_{F / K} E$, where $\operatorname{Res}_{F / K} E$ is the Weil restriction of an elliptic curve defined over a quadratic extension F / K.

$$
C: y^{2}=f(x), \quad \operatorname{deg}(f)=6, \quad G a l(f) \subseteq C_{2} \times D_{4} .
$$

2-parity conjecture
If $\operatorname{Gal}(f) \subseteq C_{2} \times D_{4}$ then J admits a Richelot isogeny Φ s.t. $\Phi \phi^{*}=[2]$.

2-parity conjecture to parity conjecture

$\amalg\left[2^{\infty}\right]$ finite, then 2-parity conjecture \Rightarrow parity conjecture.

Removing conditions on $\operatorname{Gal}(f)$: Regulator constants
Suppose C : $y^{2}=f(x)$ is semistable,

- $K_{f}=$ splitting field of f,
- $\amalg\left(J / K_{f}\right)\left[p^{\infty}\right]$ is finite for $p=3,5$,
- Parity conjecture holds for J / L for all $K \subseteq L \subseteq K_{f}$ with
$\operatorname{Gal}\left(K_{f} / L\right) \subseteq C_{2} \times D_{4}$.
Then the parity conjecture holds for J/K.

$$
C: y^{2}=f(x), \quad \operatorname{deg}(f)=6, \quad G a l(f) \subseteq C_{2} \times D_{4}
$$

2-parity conjecture
If $G a l(f) \subseteq C_{2} \times D_{4}$ then J admits a Richelot isogeny Φ s.t. $\Phi \Phi^{*}=[2]$.
$\amalg\left[2^{\infty}\right]$ finite, then 2-parity conjecture \Rightarrow parity conjecture.

Suppose $C: y^{2}=f(x)$ is semistable,

- $K_{f}=$ splitting field of f,
- $\amalg\left(J / K_{f}\right)\left[p^{\infty}\right]$ is finite for $p=3,5$,
- Parity conjecture holds for J / L for all $K \subseteq L \subseteq K_{f}$ with
$\operatorname{Gal}\left(K_{f} / L\right) \subseteq C_{2} \times D_{4}$
Then the parity conjecture holds for J/K.

$$
C: y^{2}=f(x), \quad \operatorname{deg}(f)=6, \quad G a l(f) \subseteq C_{2} \times D_{4}
$$

2-parity conjecture If $G a l(f) \subseteq C_{2} \times D_{4}$ then J admits a Richelot isogeny Φ s.t. $\Phi \Phi^{*}=[2]$.

2-parity conjecture to parity conjecture
$\amalg\left[2^{\infty}\right]$ finite, then 2-parity conjecture \Rightarrow parity conjecture.
 $\operatorname{Gal}\left(K_{f} / L\right) \subseteq C_{2} \times D_{4}$
Then the parity conjecture holds for J/K

$$
C: y^{2}=f(x), \quad \operatorname{deg}(f)=6, \quad G a l(f) \subseteq C_{2} \times D_{4} .
$$

2-parity conjecture
If $G a l(f) \subseteq C_{2} \times D_{4}$ then J admits a Richelot isogeny Φ s.t. $\Phi \Phi^{*}=[2]$.

2-parity conjecture to parity conjecture
$\amalg\left[2^{\infty}\right]$ finite, then 2-parity conjecture \Rightarrow parity conjecture.

Removing conditions on $\operatorname{Gal}(f)$: Regulator constants
Suppose C : $y^{2}=f(x)$ is semistable,

- $K_{f}=$ splitting field of f,
- $\amalg\left(J / K_{f}\right)\left[p^{\infty}\right]$ is finite for $p=3,5$,
- Parity conjecture holds for J / L for all $K \subseteq L \subseteq K_{f}$ with $\operatorname{Gal}\left(K_{f} / L\right) \subseteq C_{2} \times D_{4}$.
Then the parity conjecture holds for J / K.

"Proof" of parity conjecture for p.p. abelian surfaces

- Enough to prove 2-parity conjecture for Jacobians of genus 2 curves

$$
C: y^{2}=f(x), \quad \operatorname{deg}(f)=6, \quad G a l(f) \subseteq C_{2} \times D_{4}
$$

- Computation of parities

$$
(-1)^{r k_{2}(J)}=\prod_{v}(-1)^{o r d_{2}\left(\frac{c_{v} m_{v}}{c_{v}^{m_{v}}}\right)}, \quad \omega(J)=\prod_{v} \omega_{v}(J) .
$$

- 2-parity conjecture

$$
(-1)^{r k_{2}(J)}=\prod_{v}(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v} m_{v}}{c_{v} m_{v}}\right)}=\prod_{v} \omega_{v}(J)=\omega(J)
$$

- Computation of parities

Lemma

Let $\Phi: J \rightarrow J^{\prime}$ be an isogeny satisfying $\Phi^{*} \Phi=\Phi \Phi^{*}=[2]$. Then

$$
2^{r k_{2}(J)}=\frac{C_{J}}{C_{J^{\prime}}} \frac{\left|\amalg_{0}(J)\left[2^{\infty}\right]\right|}{\left|Ш_{0}\left(J^{\prime}\right)\left[2^{\infty}\right]\right|} \square
$$

Theorem 2.i

Assume that $G a l(f) \subseteq C_{2} \times D_{4}$. Then

$$
(-1)^{r k_{2}(J)}=\prod_{v}(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v} m_{v}}{c_{v} m_{v}}\right)},
$$

where c_{v}, c_{v}^{\prime} denote the Tamagawa numbers of J and J^{\prime} respectively and $m_{v}=2$ if C is deficient at $v, m_{v}=1$ otherwise (cf Poonen-Stoll).

- Computation of parities

Theorem 2.i

Assume that $G a l(f) \subseteq C_{2} \times D_{4}$. Then

$$
(-1)^{r k_{2}(J)}=\prod_{V}(-1)^{\circ r d_{2}\left(\frac{c_{v} m_{v}}{c_{v} m_{v}^{\prime}}\right)},
$$

where c_{v}, c_{v}^{\prime} denote the Tamagawa numbers of J and J^{\prime} respectively and $m_{v}=2$ if C is deficient at $v, m_{v}=1$ otherwise (cf Poonen-Stoll).

Joint with T. and V. Dokchitser, A. Morgan, and Alexander Betts :
Local arithmetic of hyperelliptic curves
Let K / \mathbb{Q}_{p} finite, p odd. Then for J / K semistable, c_{v}, m_{v} and ω_{v} are computable.

"Proof" of parity conjecture for p.p. abelian surfaces

- Enough to prove 2-parity conjecture for Jacobians of genus 2 curves

$$
C: y^{2}=f(x), \quad \operatorname{deg}(f)=6, \quad G a l(f) \subseteq C_{2} \times D_{4}
$$

- Computation of parities

$$
(-1)^{r k_{2}(J)}=\prod_{v}(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v} m_{v}}{c_{v} m_{v}}\right)}, \quad \omega(J)=\prod_{v} \omega_{v}(J) .
$$

- 2-parity conjecture

$$
(-1)^{r k_{2}(J)}=\prod_{v}(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v} m_{v}}{c_{v} m_{v}}\right)}=\prod_{v} \omega_{v}(J)=\omega(J)
$$

- 2-parity conjecture

Theorem

If $\operatorname{Gal}(f) \subseteq C_{2} \times D_{4}$ and C is semistable at v (and "lovely" if $v \mid 2$, cf. Adam Morgan) then

$$
(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v} m_{v}}{c_{v}^{v} m_{v}^{v}}\right.}=H_{v} \cdot \omega_{v},
$$

where H_{v} is a product of Hilbert symbols at v.

- 2-parity conjecture

Corollary (Theorem 2.ii.)
Assume that $\operatorname{Gal}(f) \subseteq C_{2} \times D_{4}$, that C is semistable and "lovely" if $v \mid 2$. Then

By Theorem 2.i. the 2-parity conjecture holds as $(-1)^{r k_{2}}(J)=\omega(J)$.

Parity of $r k(J)$

Theorem 1 (joint with V. Dokchitser)

Assume that C / K is semistable and "lovely" at 2 -adic places. If $\amalg\left(J / K_{f}\right)\left[p^{\infty}\right]$ is finite for $p=2,3,5$ then the parity conjecture holds for J / K, i.e.

$$
(-1)^{r k(J)}=\omega(J)
$$

Thank you for your attention

$$
\mathcal{F}: y^{2}=\left(x^{2}-\left(4 t_{1}\right)^{2}\right)\left(x^{2}+t_{2} x+t_{3}\right)\left(x^{2}+t_{4} x+t_{5}\right)
$$

where $t_{1} \in \mathcal{O}_{K_{v}}, \quad t_{2} \equiv 1 \bmod 2, \quad t_{3}=\frac{1}{4}+2 z, z \in \mathcal{O}_{K_{v}}$, $t_{4}=-2 \bmod 8, \quad t_{5} \equiv 1 \bmod 8$.

Theorem

Fix an exterior form ω^{\prime} of J^{\prime} and denote $\omega_{v}^{\prime 0}, \omega_{v}^{o}$ the Néron exterior forms at the place v of K associated to ω^{\prime} and $\phi^{*} \omega^{\prime}$ respectively. Then $(-1)^{r k_{2}(J)}=\prod_{v}(-1)^{\lambda_{v}}$ with

$$
\lambda_{v \mid \infty}=\operatorname{ord}_{2}\left(\frac{n \cdot m_{v}}{|\operatorname{ker}(\alpha)| \cdot n^{\prime} \cdot m_{v}^{\prime}}\right), \quad \lambda_{v \nmid \infty}=\operatorname{ord}_{2}\left(\frac{c_{v} \cdot m_{v}}{c_{v}^{\prime} \cdot m_{v}^{\prime}}\left|\frac{\phi^{*} \omega_{v}^{\prime o}}{\omega_{v}^{o}}\right|_{v}\right),
$$

where n, n^{\prime} are the number of K_{v}-connected components of J and J^{\prime}, α is the restriction of ϕ to the identity component of $J\left(K_{v}\right), c_{v}$ and c_{v}^{\prime} the Tamagawa numbers of J and J^{\prime}, and $m_{v}=2$ if C is deficient at $v, m_{v}=1$ otherwise.

Theorem: Regulator constants (T. and V. Dokchitser)

Suppose

- A semistable p.p. abelian variety,
- $F=K(A[2])$,
- $\amalg(A / F)\left[p^{\infty}\right]$ is finite for odd primes p dividing $[F: K]$,
- Parity holds for A / L for all $K \subseteq L \subseteq F$ with $G a l(F / L)$ a 2 -group.

Then the parity conjecture holds for A / K.

Remark

The Sylow 2-subgroup of S_{6} is $C_{2} \times D_{4}$.
Hence if $\operatorname{Gal}\left(K_{f} / L\right)$ is a 2-group then $\operatorname{Gal}\left(K_{f} / L\right) \subseteq C_{2} \times D_{4}$.
By Theorem 2.ii: if $\operatorname{Gal}\left(K_{f} / L\right) \subseteq C_{2} \times D_{4}, C$ semistable and "lovely" at 2-adic places then the 2-parity conjecture holds for J / L.
Thus if $\left|\amalg\left(J / K_{f}\right)\left[2^{\infty}\right]\right|<\infty$ then the parity conjecture holds for J / L.

- $\operatorname{Gal}(f) \subseteq C_{2} \times D_{4} \quad \Longrightarrow \quad$ Richelot isogeny

$$
\begin{aligned}
& \qquad f(x)=q_{1}(x) q_{2}(x) q_{3}(x) \text { with roots } \alpha_{i}, \beta_{i} \\
& D_{1}=\left[\left(\alpha_{1}, 0\right),\left(\beta_{1}, 0\right)\right], \quad D_{2}=\left[\left(\alpha_{2}, 0\right),\left(\beta_{2}, 0\right)\right], \quad D_{3}=\left[\left(\alpha_{3}, 0\right),\left(\beta_{3}, 0\right)\right] \\
& \text { lie in } J(\bar{K})[2] \text { and }\left\{0, D_{1}, D_{2}, D_{3}\right\} \text { is a Galois stable subgroup of } J(K)[2]
\end{aligned}
$$

Proposition

If $\operatorname{Gal}(f) \subseteq C_{2} \times D_{4}$ then J admits a Richelot isogeny Φ s.t. $\Phi \Phi^{*}=[2]$.

Remark: Explicit construction

There is an explicit model for the curve C^{\prime} underlying the isogenous Jacobian J^{\prime}.

Local comparison

Let $f(x)=q_{1}(x) q_{2}(x) q_{3}(x)$ with roots $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3}$ and $\Delta_{i}=\operatorname{Disc}\left(q_{i}(x)\right.$.

$$
\begin{aligned}
H_{v}= & \left(-1, I_{22} I_{41} I_{43} I_{60}\right)_{v}\left(I_{20},-I_{40} I_{44}\right)_{v}\left(I_{40}, \ell I_{60} I_{43}\right)_{v}\left(c, I_{23} I_{44} I_{80}\right)_{v}\left(I_{23}, I_{41}\right)_{v} \\
& \left(I_{45},-\ell I_{22} I_{21}\right)_{v}\left(I_{44}, 2 I_{22} I_{42} I_{43}\right)_{v}\left(I_{80},-2 I_{41} I_{42} I_{60}\right)_{v}\left(I_{42},-I_{60} I_{43}\right)_{v},
\end{aligned}
$$

where....

$$
\begin{aligned}
& I_{20}=\frac{1}{2^{3}}\left(\Delta_{2}+\Delta_{3}\right), \\
& I_{21}=\left(\alpha_{2}+\beta_{2}\right)\left(\alpha_{3}+\beta_{3}\right), \\
& I_{22}=\left(\alpha_{2}-\alpha_{3}\right)\left(\beta_{2}-\beta_{3}\right)+\left(\beta_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right), \\
& I_{23}=\Delta_{1}, \\
& 4_{40}=\frac{1}{2^{6}}\left(\Delta_{2}-\Delta_{3},\right. \\
& 4_{11}=8_{3}\left(\left(\alpha_{2}-\beta_{1}\right)\left(\beta_{2}-\beta_{1}\right)\left(\alpha_{3}-\beta_{1}\right)\left(\beta_{3}-\beta_{1}\right)+\left(\alpha_{2}-\alpha_{1}\right)\left(\beta_{2}-\alpha_{1}\right)\left(\alpha_{3}-\right.\right. \\
& \left.\left.\alpha_{1}\right)\left(\beta_{3}-\alpha_{1}\right)\right), \\
& I_{42}=\left(\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\beta_{1}\right)+\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)\right)\left(\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\beta_{1}\right)+\right. \\
& \left.\left(\beta_{3}-\alpha_{1}\right)\left(\beta_{3}-\beta_{1}\right)\right), \\
& I_{43}=\Delta_{2}\left(\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\beta_{1}\right)+\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)\right)+\Delta_{3}\left((\alpha _ { 3 } - \alpha _ { 1 }) \left(\alpha_{3}-\right.\right. \\
& \left.\left.\beta_{1}\right)+\left(\beta_{3}-\alpha_{1}\right)\left(\beta_{3}-\beta_{1}\right)\right), \\
& I_{44}=\Delta_{2} \Delta_{3}, \\
& I_{45}=4\left(\beta_{3}-\beta_{2}\right)\left(\alpha_{3}-\beta_{2}\right)\left(\alpha_{2}-\beta_{3}\right)\left(\alpha_{2}-\alpha_{3}\right), \\
& I_{60}=\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\beta_{1}\right)\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)\left(\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\beta_{1}\right)+\left(\beta_{2}-\right.\right. \\
& \left.\left.\alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)\right)+\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\beta_{1}\right)\left(\beta_{3}-\alpha_{1}\right)\left(\beta_{3}-\beta_{1}\right)\left((\alpha _ { 3 } - \alpha _ { 1 }) \left(\alpha_{3}-\right.\right. \\
& \left.\left.\beta_{1}\right)+\left(\beta_{3}-\alpha_{1}\right)\left(\beta_{3}-\beta_{1}\right)\right), \\
& I_{80}= \\
& \left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\beta_{1}\right)\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\beta_{1}\right)\left(\beta_{3}-\alpha_{1}\right)\left(\beta_{3}-\beta_{1}\right) .
\end{aligned}
$$

Known results for the parity conjecture

From work of Monsky, Nekovar, Dokchitser and Dokchitser, Cesnavicius, Coates-Fukaya-Kato-Sujatha, Kramer-Tunnell, Morgan

- E / \mathbb{Q} assuming $\amalg(E)\left[p^{\infty}\right]$ finite for some p,
- E / K, for a totally real field K, assuming $\amalg(E)\left[p^{\infty}\right]$ finite for some p (+ mild constraints),
- E / K admitting a p-isogeny, assuming $Ш(E)\left[p^{\infty}\right]$ finite,
- $E / K(\sqrt{d}), E$ defined over $K, d \in K^{\times} \backslash K^{\times 2}, \amalg(E / K(\sqrt{d}))\left[2^{\infty}\right]$ finite,
- $E / K, \amalg(E / F)\left[2^{\infty}\right], \amalg(E / F)\left[3^{\infty}\right], F=K(E[2])$.
- $A / K(\sqrt{d}), A=\operatorname{Jac}(C), C$ semistable hyperelliptic curve over K, $d \in K^{\times} \backslash K^{\times 2}, \amalg(A / K(\sqrt{d}))\left[2^{\infty}\right]$ finite, (+ mild constraints),
- p.p. Abelian varieties A / K admitting an isogeny $\Phi: A \rightarrow A^{\prime}$ s.t. $\Phi^{*} \Phi=[p], \amalg(A)\left[p^{\infty}\right]$ finite, p odd (+ mild constraints),

