Parity of ranks of abelian surfaces

Céline Maistret

University of Bristol

September 5, 2017

Céline Maistret (University of Bristol)

Parity of ranks of abelian surfaces

September 5, 2017 1 / 25

Parity of ranks of abelian surfaces

Ranks and parity of ranks of abelian varieties

- Conjectures
- Example

2 Parity of ranks of principally polarized abelian surfaces

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A/K be an abelian variety over a number field

$$A(K) \simeq \mathbb{Z}^{rk(A)} \oplus T, \quad rk_A, |T| < \infty.$$

Birch and Swinnerton-Dyer conjecture

Granting analytic continuation of the *L*-function of A/K to \mathbb{C} ,

$$rk(A) = ord_{s=1}L(A/K, s) =: rk_{an}(A).$$

Conjectural functional equation

The completed L-function $L^*(A/K, s)$ satisfies

$$L^*(A/K, s) = W(A) \ L^*(A/K, 2-s), \quad W(A) \in \{\pm 1\}.$$

(日) (同) (三) (三)

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A/K be an abelian variety over a number field

$$A(K) \simeq \mathbb{Z}^{rk(A)} \oplus T, \quad rk_A, |T| < \infty.$$

Birch and Swinnerton-Dyer conjecture

Granting analytic continuation of the L-function of A/K to \mathbb{C} ,

$$rk(A) = ord_{s=1}L(A/K, s) =: rk_{an}(A).$$

Conjectural functional equation

The completed L-function $L^*(A/K, s)$ satisfies

 $L^*(A/K, s) = W(A) \ L^*(A/K, 2-s), \quad W(A) \in \{\pm 1\}.$

- 3

イロン 不聞と 不同と 不同と

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A/K be an abelian variety over a number field

$$A(K) \simeq \mathbb{Z}^{rk(A)} \oplus T, \quad rk_A, |T| < \infty.$$

Birch and Swinnerton-Dyer conjecture

Granting analytic continuation of the *L*-function of A/K to \mathbb{C} ,

$$rk(A) = ord_{s=1}L(A/K, s) =: rk_{an}(A).$$

Conjectural functional equation

The completed L-function $L^*(A/K, s)$ satisfies

$$L^*(A/K, s) = W(A) \ L^*(A/K, 2-s), \quad W(A) \in \{\pm 1\}.$$

イロト 不得下 イヨト イヨト

- 31

Parity of analytic rank

Analytic rank

$$rk_{an}(A) := ord_{s=1}L(A/K, s).$$

Sign in functional equation

$$L^*(A/K, s) = W(A) \ L^*(A/K, 2-s), \quad W(A) \in \{\pm 1\}.$$

Consequence

$$(-1)^{rk_{an}(A)} = W(A).$$

Céline Maistret (University of Bristol)

3

イロト イポト イヨト イヨト

B.S.D. modulo 2

$$(-1)^{rk(A)} = (-1)^{rk_{an}(A)} = W(A).$$

Global root number

The sign in the functional equation W(A) is conjectured to be equal to the global root number of A:

$$W(A) = \omega(A).$$

Parity conjecture

$$(-1)^{rk(A)} = \omega(A).$$

Céline Maistret (University of Bristol)

3

B.S.D. modulo 2

$$(-1)^{rk(A)} =_{BSD} (-1)^{rk_{an}(A)} = W(A).$$

Global root number

The sign in the functional equation W(A) is conjectured to be equal to the global root number of A:

$$W(A) = \omega(A).$$

Parity conjecture

$$(-1)^{rk(A)} = \omega(A).$$

Céline Maistret (University of Bristol)

イロト 不得 トイヨト イヨト 二日

B.S.D. modulo 2

$$(-1)^{rk(A)} =_{BSD} (-1)^{rk_{an}(A)} = W(A).$$

Global root number

The sign in the functional equation W(A) is conjectured to be equal to the global root number of A:

$$W(A) = \omega(A).$$

Parity conjecture

$$(-1)^{rk(A)} = \omega(A).$$

Céline Maistret (University of Bristol)

p^{∞} Selmer rank and *p*-parity conjecture

p^{∞} Selmer rank

For a prime p, define the p^{∞} Selmer rank as

 $rk_p(A) = rk(A) + \delta_p$, where

 $\operatorname{III}[p^{\infty}] = (\mathbb{Q}_p / \mathbb{Z}_p)^{\delta_p} \times \operatorname{III}_0[p^{\infty}], \quad |\operatorname{III}_0[p^{\infty}]| < \infty.$

Assuming finiteness of III(A); for all prime p

 $rk(A) = rk_p(A).$

p-parity conjecture

For all prime p,

$$(-1)^{rk_p(A)} = \omega(A).$$

Céline Maistret (University of Bristol)

イロト 不得 トイヨト イヨト 二日

p^{∞} Selmer rank and *p*-parity conjecture

p^{∞} Selmer rank

For a prime p, define the p^{∞} Selmer rank as

 $rk_p(A) = rk(A) + \delta_p$, where

 $\operatorname{III}[p^{\infty}] = (\mathbb{Q}_p / \mathbb{Z}_p)^{\delta_p} \times \operatorname{III}_0[p^{\infty}], \quad |\operatorname{III}_0[p^{\infty}]| < \infty.$

Assuming finiteness of III(A); for all prime p

 $rk(A) = rk_p(A).$

p-parity conjecture

For all prime p,

$$(-1)^{rk_p(A)} = \omega(A).$$

Céline Maistret (University of Bristol)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

p^{∞} Selmer rank and *p*-parity conjecture

p^{∞} Selmer rank

For a prime p, define the p^{∞} Selmer rank as

 $rk_{\rho}(A) = rk(A) + \delta_{\rho}$, where

 $\operatorname{III}[p^{\infty}] = (\mathbb{Q}_p / \mathbb{Z}_p)^{\delta_p} \times \operatorname{III}_0[p^{\infty}], \quad |\operatorname{III}_0[p^{\infty}]| < \infty.$

Assuming finiteness of III(A); for all prime p

$$rk(A) = rk_p(A).$$

p-parity conjecture

For all prime p,

$$(-1)^{rk_p(A)} = \omega(A).$$

Céline Maistret (University of Bristol)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Parity and isogeny

Theorem (Cassels). Isogeny invariance of B.S.D. quotient

Assuming III(E) is finite, if $\Phi : E \to E'$ is an isogeny defined over \mathbb{Q} then $|III(E)|_{Reg_{E}C_{E}} = |III(E')|_{Reg_{E}C_{E}}$

$$\frac{\operatorname{II}(L)|\operatorname{Reg}_{E}C_{E}}{|E(\mathbb{Q})_{tors}|^{2}} = \frac{|\operatorname{III}(L)|\operatorname{Reg}_{E}C_{E}|}{|E'(\mathbb{Q})_{tors}|^{2}}$$

Example

$$E/\mathbb{Q}: y^2 + y = x^3 + x^2 - 7x + 5$$
, *E* has a 3-isogeny,
 $\Delta_E = -7 \cdot 13$, $c_7 = c_{13} = 1$, $c_7' = c_{13}' = 3$, $c_{\infty} = 3c_{\infty}'$

$$\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{tors}|^2 C_E}{|\mathrm{III}(E')||E(\mathbb{Q})_{tors}|^2 C_{E'}} = \frac{C_E}{C_{E'}} \cdot \Box = \frac{3}{9} \cdot \Box \neq 1$$

 \Rightarrow *E* has a point of infinite order.

Céline Maistret (University of Bristol)

Parity of ranks of abelian surfaces

September 5, 2017 7 / 25

イロト 不得下 イヨト イヨト 二日

Parity and isogeny

Theorem (Cassels). Isogeny invariance of B.S.D. quotient

Assuming III(E) is finite, if $\Phi : E \to E'$ is an isogeny defined over \mathbb{Q} then |III(E)|Page C = |III(E')|Page C

$$\frac{|\mathrm{III}(E')|\operatorname{Reg}_{E}C_{E}}{|E(\mathbb{Q})_{\operatorname{tors}}|^{2}} = \frac{|\mathrm{III}(E')|\operatorname{Reg}_{E'}C_{E'}}{|E'(\mathbb{Q})_{\operatorname{tors}}|^{2}}$$

Example

$$E/\mathbb{Q}: y^2 + y = x^3 + x^2 - 7x + 5$$
, E has a 3-isogeny,
 $\Delta_E = -7 \cdot 13$, $c_7 = c_{13} = 1$, $c_7' = c_{13}' = 3$, $c_{\infty} = 3c_{\infty}'$

$$\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{tors}|^2 C_E}{|\mathrm{III}(E')||E(\mathbb{Q})_{tors}|^2 C_{E'}} = \frac{C_E}{C_{E'}} \cdot \Box = \frac{3}{9} \cdot \Box \neq 1$$

 \Rightarrow *E* has a point of infinite order.

Céline Maistret (University of Bristol)

Parity of ranks of abelian surfaces

September 5, 2017 7 / 25

- 34

・ロン ・四 ・ ・ ヨン ・ ヨン

Lemma (Dokchitser-Dokchitser)

If Φ is an isogeny of degree d such that $\Phi^*\Phi = \Phi\Phi^* = [d]$ then

$$\frac{\operatorname{Reg}_E}{\operatorname{Reg}_{E'}} = d^{\operatorname{rk}(E)} \cdot \Box$$

$$c_7 = c_{13} = 1, \quad c_7' = c_{13}' = 3, \quad c_\infty = 3c_\infty'$$

 $\frac{Reg_E}{Reg_{E'}} = \frac{1}{3} \cdot \Box = 3^{rk(E)} \cdot \Box$

\Rightarrow *E* has odd rank

Remark

Without assuming finiteness of III(E), can prove $rk_3(E)$ is odd.

Céline Maistret (University of Bristol)

"Proof" of parity conjecture for p.p. abelian surfaces

• Enough to prove 2-parity conjecture for Jacobians of genus 2 curves

$$C: y^2 = f(x), \qquad deg(f) = 6, \qquad Gal(f) \subseteq C_2 \times D_4.$$

• Computation of parities

$$(-1)^{rk_2(J)} = \prod_{\nu} (-1)^{ord_2(\frac{c_{\nu}m_{\nu}}{c_{\nu}'m_{\nu}'})}, \qquad \omega(J) = \prod_{\nu} \omega_{\nu}(J).$$

2-parity conjecture

$$(-1)^{rk_2(J)} = \prod_{\nu} (-1)^{ord_2(\frac{c_\nu m_\nu}{c_\nu' m_\nu'})} = \prod_{\nu} \omega_{\nu}(J) = \omega(J)$$

• Enough to consider Jacobians of genus 2 curves

$$C: y^2 = f(x), \qquad deg(f) = 6$$

Theorem (cf Gonzales-Guàrdia-Rotger)

Let A/K be a principally polarized abelian surface defined over a number field K. Then A is one of the following three types:

- $A \simeq_K J(C)$, where C/K is a smooth curve of genus 2,
- $A \simeq_K E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over K,
- $A \simeq_K Res_{F/K}E$, where $Res_{F/K}E$ is the Weil restriction of an elliptic curve defined over a quadratic extension F/K.

• Enough to consider Jacobians of genus 2 curves

$$C: y^2 = f(x), \qquad deg(f) = 6$$

Theorem (cf Gonzales-Guàrdia-Rotger)

Let A/K be a principally polarized abelian surface defined over a number field K. Then A is one of the following three types:

- $A \simeq_{\kappa} J(C)$, where C/K is a smooth curve of genus 2,
- $A \simeq_{\kappa} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over K,
- $A \simeq_K Res_{F/K}E$, where $Res_{F/K}E$ is the Weil restriction of an elliptic curve defined over a quadratic extension F/K.

(人間) とうき くうとう う

$$C: y^2 = f(x), \qquad deg(f) = 6, \qquad Gal(f) \subseteq C_2 \times D_4.$$

If $Gal(f) \subseteq C_2 \times D_4$ then J admits a **Richelot isogeny** Φ s.t. $\Phi \Phi^* = [2]$.

2-parity conjecture to parity conjecture

 ${\rm III}[2^\infty]$ finite, then 2-parity conjecture $\Rightarrow~$ parity conjecture.

Removing conditions on Gal(f): Regulator constants

Suppose $C: y^2 = f(x)$ is semistable, • K_f = splitting field of f, • $\operatorname{III}(J/K_f)[p^{\infty}]$ is finite for p = 3, 5, • Parity conjecture holds for J/L for all $K \subseteq L \subseteq K_f$ with $Gal(K_f/L) \subseteq C_2 \times D_4$. Then the parity conjecture holds for J/K.

$$C: y^2 = f(x), \qquad deg(f) = 6, \qquad Gal(f) \subseteq C_2 \times D_4.$$

If $Gal(f) \subseteq C_2 \times D_4$ then J admits a **Richelot isogeny** Φ s.t. $\Phi \Phi^* = [2]$.

2-parity conjecture to parity conjecture

 ${
m III}[2^\infty]$ finite, then 2-parity conjecture $\Rightarrow~$ parity conjecture.

Removing conditions on Gal(f) : Regulator constants

Suppose $C: y^2 = f(x)$ is semistable, • K_f = splitting field of f, • $\operatorname{III}(J/K_f)[p^{\infty}]$ is finite for p = 3, 5, • Parity conjecture holds for J/L for all $K \subseteq L \subseteq K_f$ with $Gal(K_f/L) \subseteq C_2 \times D_4$. Then the parity conjecture holds for J/K.

$$C: y^2 = f(x), \qquad deg(f) = 6, \qquad Gal(f) \subseteq C_2 \times D_4.$$

If $Gal(f) \subseteq C_2 \times D_4$ then J admits a **Richelot isogeny** Φ s.t. $\Phi \Phi^* = [2]$.

2-parity conjecture to parity conjecture

 $\operatorname{III}[2^{\infty}]$ finite, then 2-parity conjecture \Rightarrow parity conjecture.

Removing conditions on Gal(f): Regulator constants

Suppose $C : y^2 = f(x)$ is semistable, • K_f = splitting field of f, • $\operatorname{III}(J/K_f)[p^{\infty}]$ is finite for p = 3, 5, • Parity conjecture holds for J/L for all $K \subseteq L \subseteq K_f$ with $Gal(K_f/L) \subseteq C_2 \times D_4$. Then the parity conjecture holds for J/K.

$$C: y^2 = f(x), \qquad deg(f) = 6, \qquad Gal(f) \subseteq C_2 \times D_4.$$

If $Gal(f) \subseteq C_2 \times D_4$ then J admits a **Richelot isogeny** Φ s.t. $\Phi \Phi^* = [2]$.

2-parity conjecture to parity conjecture

 $\operatorname{III}[2^{\infty}]$ finite, then 2-parity conjecture \Rightarrow parity conjecture.

Removing conditions on Gal(f): Regulator constants

Suppose $C: y^2 = f(x)$ is semistable,

- K_f = splitting field of f,
- $\operatorname{III}(J/K_f)[p^{\infty}]$ is finite for p = 3, 5,
- Parity conjecture holds for J/L for all $K \subseteq L \subseteq K_f$ with $Gal(K_f/L) \subseteq C_2 \times D_4$.

Then the parity conjecture holds for J/K.

"Proof" of parity conjecture for p.p. abelian surfaces

• Enough to prove 2-parity conjecture for Jacobians of genus 2 curves

$$C: y^2 = f(x), \qquad deg(f) = 6, \qquad Gal(f) \subseteq C_2 \times D_4.$$

• Computation of parities

$$(-1)^{rk_2(J)} = \prod_{\nu} (-1)^{ord_2(\frac{c_{\nu}m_{\nu}}{c_{\nu}m_{\nu}})}, \qquad \omega(J) = \prod_{\nu} \omega_{\nu}(J).$$

2-parity conjecture

$$(-1)^{rk_2(J)} = \prod_{v} (-1)^{ord_2(\frac{c_v m_v}{c_v' m_v'})} = \prod_{v} \omega_v(J) = \omega(J)$$

• Computation of parities

Lemma

Let $\Phi: J \to J'$ be an isogeny satisfying $\Phi^* \Phi = \Phi \Phi^* = [2]$. Then

$$2^{rk_2(J)} = \frac{C_J}{C_{J'}} \frac{|\mathrm{III}_0(J)[2^\infty]|}{|\mathrm{III}_0(J')[2^\infty]|} \square$$

Theorem 2.i

Assume that $Gal(f) \subseteq C_2 \times D_4$. Then

$$(-1)^{rk_2(J)} = \prod_{v} (-1)^{ord_2(\frac{c_v m_v}{c_v' m_v'})},$$

where c_v, c'_v denote the Tamagawa numbers of J and J' respectively and $m_v = 2$ if C is deficient at v, $m_v = 1$ otherwise (cf Poonen-Stoll).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Computation of parities

Theorem 2.i

Assume that $Gal(f) \subseteq C_2 \times D_4$. Then

$$(-1)^{rk_2(J)} = \prod_{v} (-1)^{ord_2(\frac{c_v m_v}{c_v' m_v'})},$$

where c_v, c'_v denote the Tamagawa numbers of J and J' respectively and $m_v = 2$ if C is deficient at v, $m_v = 1$ otherwise (cf Poonen-Stoll).

Joint with T. and V. Dokchitser, A. Morgan, and Alexander Betts :

Local arithmetic of hyperelliptic curves

Let K/\mathbb{Q}_p finite, p odd. Then for J/K semistable, c_v , m_v and ω_v are computable.

イロト イポト イヨト イヨト 二日

"Proof" of parity conjecture for p.p. abelian surfaces

• Enough to prove 2-parity conjecture for Jacobians of genus 2 curves

$$C: y^2 = f(x), \qquad deg(f) = 6, \qquad Gal(f) \subseteq C_2 \times D_4.$$

• Computation of parities

$$(-1)^{rk_2(J)} = \prod_{\nu} (-1)^{ord_2(\frac{c_{\nu}m_{\nu}}{c_{\nu}'m_{\nu}'})}, \qquad \omega(J) = \prod_{\nu} \omega_{\nu}(J)$$

2-parity conjecture

$$(-1)^{rk_2(J)} = \prod_{v} (-1)^{ord_2(\frac{c_v m_v}{c_v m_v})} = \prod_{v} \omega_v(J) = \omega(J)$$

Theorem

If $Gal(f) \subseteq C_2 \times D_4$ and C is semistable at v (and "lovely" if v | 2, cf. Adam Morgan) then

$$(-1)^{\operatorname{ord}_2(\frac{c_v m_v}{c'_v m'_v})} = H_v \cdot \omega_v,$$

where H_v is a product of Hilbert symbols at v.

3

Corollary (Theorem 2.ii.)

Assume that $Gal(f) \subseteq C_2 \times D_4$, that C is semistable and "lovely" if $v \mid 2$. Then $\Pi(c_1)^{ord_2(\frac{c_V m_V}{T})} = \Pi(c_1)$

$$\prod_{v} (-1)^{\operatorname{ord}_2(\frac{\omega_v m_v}{c'_v m_v})} = \prod_{v} \omega_v(J).$$

By Theorem 2.i. the 2-parity conjecture holds as $(-1)^{rk_2(J)} = \omega(J)$.

- 本間 と えき と えき とうき

Parity of rk(J)

Theorem 1 (joint with V. Dokchitser)

Assume that C/K is semistable and "lovely" at 2-adic places. If $\operatorname{III}(J/K_f)[p^{\infty}]$ is finite for p = 2, 3, 5 then the parity conjecture holds for J/K, i.e.

$$(-1)^{rk(J)} = \omega(J).$$

- 本語 医 本 医 医 一 医

Thank you for your attention

< 67 ▶

3

"Lovely" at 2-adic places v

$$\mathcal{F}: y^2 = (x^2 - (4t_1)^2)(x^2 + t_2x + t_3)(x^2 + t_4x + t_5),$$

where $t_1 \in \mathcal{O}_{K_v}$, $t_2 \equiv 1 \mod 2$, $t_3 = \frac{1}{4} + 2z, z \in \mathcal{O}_{K_v}$,
 $t_4 = -2 \mod 8$, $t_5 \equiv 1 \mod 8$.

Theorem

Fix an exterior form ω' of J' and denote $\omega_v'^o$, ω_v^o the Néron exterior forms at the place v of K associated to ω' and $\phi^*\omega'$ respectively. Then $(-1)^{rk_2(J)} = \prod_v (-1)^{\lambda_v}$ with

$$\lambda_{\nu\mid\infty} = \operatorname{ord}_2\left(\frac{n \cdot m_{\nu}}{|\operatorname{ker}(\alpha)| \cdot n' \cdot m_{\nu}'}\right), \quad \lambda_{\nu\nmid\infty} = \operatorname{ord}_2\left(\frac{c_{\nu} \cdot m_{\nu}}{c_{\nu}' \cdot m_{\nu}'} \Big| \frac{\phi^* \omega_{\nu}^{oo}}{\omega_{\nu}^{o}} \Big|_{\nu}\right),$$

where n, n' are the number of K_v -connected components of J and J', α is the restriction of ϕ to the identity component of $J(K_v)$, c_v and c'_v the Tamagawa numbers of J and J', and $m_v = 2$ if C is deficient at v, $m_v = 1$ otherwise.

Theorem: Regulator constants (T. and V. Dokchitser)

Suppose

- A semistable p.p. abelian variety,
- F = K(A[2]),
- $\operatorname{III}(A/F)[p^{\infty}]$ is finite for odd primes p dividing [F:K],
- Parity holds for A/L for all $K \subseteq L \subseteq F$ with Gal(F/L) a 2-group. Then the parity conjecture holds for A/K.

Remark

The Sylow 2-subgroup of S_6 is $C_2 \times D_4$. Hence if $Gal(K_f/L)$ is a 2-group then $Gal(K_f/L) \subseteq C_2 \times D_4$. By Theorem 2.ii: if $Gal(K_f/L) \subseteq C_2 \times D_4$, C semistable and "lovely" at 2-adic places then the 2-parity conjecture holds for J/L. Thus if $|III(J/K_f)[2^{\infty}]| < \infty$ then the parity conjecture holds for J/L.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• $Gal(f) \subseteq C_2 \times D_4 \implies$ Richelot isogeny

$$f(x) = q_1(x)q_2(x)q_3(x)$$
 with roots α_i, β_i .

 $D_1 = [(\alpha_1, 0), (\beta_1, 0)], \quad D_2 = [(\alpha_2, 0), (\beta_2, 0)], \quad D_3 = [(\alpha_3, 0), (\beta_3, 0)]$ lie in $J(\overline{K})[2]$ and $\{0, D_1, D_2, D_3\}$ is a Galois stable subgroup of J(K)[2].

Proposition

If $Gal(f) \subseteq C_2 \times D_4$ then J admits a **Richelot isogeny** Φ s.t. $\Phi \Phi^* = [2]$.

Remark : Explicit construction

There is an explicit model for the curve C' underlying the isogenous Jacobian J'.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Local comparison

Let
$$f(x) = q_1(x)q_2(x)q_3(x)$$
 with roots $\alpha_1, \beta_1, \alpha_2, \beta_2, \alpha_3, \beta_3$ and $\Delta_i = Disc(q_i(x))$.

$$H_{\nu} = (-1, I_{22}I_{41}I_{43}I_{60})_{\nu}(I_{20}, -I_{40}I_{44})_{\nu}(I_{40}, \ell I_{60}I_{43})_{\nu}(c, I_{23}I_{44}I_{80})_{\nu}(I_{23}, I_{41})_{\nu}$$
$$(I_{45}, -\ell I_{22}I_{21})_{\nu}(I_{44}, 2I_{22}I_{42}I_{43})_{\nu}(I_{80}, -2I_{41}I_{42}I_{60})_{\nu}(I_{42}, -I_{60}I_{43})_{\nu},$$

where....

2

∃ ► < ∃ ►</p>

• • • • • • • •

$$\begin{split} &h_{20} = \frac{1}{2^3} (\Delta_2 + \Delta_3), \\ &h_{21} = (\alpha_2 + \beta_2)(\alpha_3 + \beta_3), \\ &h_{22} = (\alpha_2 - \alpha_3)(\beta_2 - \beta_3) + (\beta_2 - \alpha_3)(\alpha_2 - \beta_3), \\ &h_{23} = \Delta_1, \\ &h_{40} = \frac{1}{2^5} (\Delta_2 - \Delta_3, \\ &h_{41} = 8((\alpha_2 - \beta_1)(\beta_2 - \beta_1)(\alpha_3 - \beta_1)(\beta_3 - \beta_1) + (\alpha_2 - \alpha_1)(\beta_2 - \alpha_1)(\alpha_3 - \alpha_1)(\beta_3 - \alpha_1)), \\ &h_{42} = ((\alpha_2 - \alpha_1)(\alpha_2 - \beta_1) + (\beta_2 - \alpha_1)(\beta_2 - \beta_1))((\alpha_3 - \alpha_1)(\alpha_3 - \beta_1) + (\beta_3 - \alpha_1)(\beta_3 - \beta_1)), \\ &h_{43} = \Delta_2((\alpha_2 - \alpha_1)(\alpha_2 - \beta_1) + (\beta_2 - \alpha_1)(\beta_2 - \beta_1)) + \Delta_3((\alpha_3 - \alpha_1)(\alpha_3 - \beta_1) + (\beta_3 - \alpha_1)(\beta_3 - \beta_1)), \\ &h_{44} = \Delta_2\Delta_3, \\ &h_{55} = 4(\beta_3 - \beta_2)(\alpha_3 - \beta_2)(\alpha_2 - \beta_3)(\alpha_2 - \alpha_3), \\ &h_{60} = (\alpha_2 - \alpha_1)(\alpha_2 - \beta_1)(\beta_2 - \alpha_1)(\beta_2 - \beta_1)((\alpha_2 - \alpha_1)(\alpha_2 - \beta_1) + (\beta_2 - \alpha_1)(\beta_2 - \beta_1))) + (\alpha_3 - \alpha_1)(\alpha_3 - \beta_1)(\beta_3 - \alpha_1)(\beta_3 - \beta_1)), \\ &h_{80} = (\alpha_2 - \alpha_1)(\alpha_2 - \beta_1)(\beta_2 - \alpha_1)(\beta_2 - \beta_1)(\alpha_3 - \beta_1)(\beta_3 - \alpha_1)(\beta_3 - \beta_1). \\ \end{split}$$

Known results for the parity conjecture

From work of Monsky, Nekovar, Dokchitser and Dokchitser, Cesnavicius, Coates-Fukaya-Kato-Sujatha, Kramer-Tunnell, Morgan

- E/\mathbb{Q} assuming $\operatorname{III}(E)[p^{\infty}]$ finite for some p,
- E/K, for a totally real field K, assuming Ш(E)[p[∞]] finite for some p (+ mild constraints),
- E/K admitting a *p*-isogeny, assuming $\operatorname{III}(E)[p^{\infty}]$ finite,
- $E/K(\sqrt{d})$, E defined over K, $d \in K^{\times} \setminus K^{\times 2}$, $\operatorname{III}(E/K(\sqrt{d}))[2^{\infty}]$ finite,
- E/K, $\operatorname{III}(E/F)[2^{\infty}]$, $\operatorname{III}(E/F)[3^{\infty}]$, F = K(E[2]).
- A/K(√d), A = Jac(C), C semistable hyperelliptic curve over K, d ∈ K[×] \ K^{×2}, Ш(A/K(√d))[2[∞]] finite, (+ mild constraints),
- p.p. Abelian varieties A/K admitting an isogeny $\Phi : A \to A'$ s.t. $\Phi^*\Phi = [p], \ III(A)[p^{\infty}]$ finite, $p \ odd$ (+ mild constraints),

- ∢ ⊢⊒ →